
Modeling and Adjustment of THEMIS IR
Line Scanner Camera Image Measurements

by

Brent Archinal
USGS Astrogeology Team
2255 N. Gemini Drive
Flagstaff, AZ 86001

barchinal@usgs.gov

As of 2004 December 9

Version 1.0

Table of Contents

1. Introduction

1.1. General
1.2. Conventions

2. Observations Equations and Their Partials
2.1. Line Scanner Camera Specific Modeling
2.2. Partials for New Parameters

2.2.1. Orientation Partials
2.2.2. Spatial Partials
2.2.3. Partials of the observations with respect to the parameters
2.2.4. Parameter Weighting

3. Adjustment Model
4. Implementation

4.1. Input/Output Changes
4.1.1. Image Measurements
4.1.2. SPICE Data
4.1.3. Program Control (Parameters) Information

4.2. Computational Changes
4.2.1. Generation of A priori Information
4.2.2. Partial derivatives
4.2.3. Solution Output

5. Testing and Near Term Work
6. Future Work
Acknowledgements
References
Useful web sites
Appendix I - Partial Transcription of Colvin (1992) Documentation
Appendix II - HiRISE Sensor Model Information

 2

1. Introduction

1.1 General

The overall problem we’re solving is that we want to be able to set up the
relationships between the coordinates of arbitrary physical points in space (e.g.
ground points) and their coordinates on line scanner (or “pushbroom”) camera
images. We then want to do a least squares solution in order to come up with
consistent camera orientation and position information that represents these
relationships accurately.

For now, supported by funding from the NASA Critical Data Products initiative
(for 2003 September to 2005 August), we will concentrate on handling the
THEMIS IR camera system (Christensen et al., 2003). Although it is in fact a
multispectral line scanner camera system, we will (generally) treat it for now as a
single line scanner camera system. (At some future point the multiple spectral
images sensors could allow this system to be treated as a multi-line scanner
camera system.) As much as possible, we will also keep our options open for
processing of other planetary line scanner camera systems. In particular, in the
near term of the next 1-2 years, we plan to make modifications to allow for
processing of images from first the Mars Express HRSC camera system (a 9 line
scanner camera system, with 3 sets of 3 lines for color) (Neukum et al., 2004)
and secondly the Mars Reconnaissance Orbiter (MRO) HiRISE camera system
(McEwen et al., 2002; Kirk, 2004 – see Appendix II). In the longer term we may
seek funding to allow for processing of Mars Global Surveyor (MGS) Mars
Orbiter Camera (MOC) wide angle (WA) and narrow angle (NA) cameras (Malin
et al., 1992; Malin and Edgett, 2001), as well as the Cassini UVIS camera. We
may also consider allowing for processing of images from the multispectral
Cassini VIMS pixel scanner (“whiskbroom”) system.

The basic processing steps are essentially the same as those required for a
framing camera system, e.g. as already implemented in the RAND-USGS
Planetary Geodesy (RUPG) software system (Colvin, 1992; Archinal et al, 2002-
2004). The essential difference is that it becomes necessary to solve for the
position and (external) orientation of the camera for every line (or pixel for a pixel
scanner) rather than just once per frame. Using standard techniques such a
problem is substantially underdetermined, particularly using any reasonable
number of tie point measurements per image. The straightforward solution – in
theory but not necessarily in practice – is to add parameters that model the
camera position and orientation changes as the image is collected, as offsets
from one or more sets of discrete values (e.g. the one set a framing camera
would have).

A search of the literature shows a nearly overwhelming number of ways in which
to model the motions taking place during image collection. A difficult part of the
implementation here has indeed been to select one of the methods used.

 3

Methods developed previously have had varying dependencies on the specific
camera system, e.g. whether airborne or satellite, number of lines, availability of
auxiliary information, accuracy and time density of orbit and orientation
information, size of the image, etc.

Common methods previously used seem to be categorized into: a) fitting smooth
curves of position and orientation changes between discrete lines (e.g. breaking
up the image into multiple sections, and for each section relying on measured
satellite position via GPS and orientation via some inertial system) (e.g. Poli et
al., 2004); b) fitting simple polynomial offsets for position and orientation (e.g.
Kratky, 1989; Fritsch and Stallmann, 2002); c) fitting Lagrangian interpolation
polynomial offsets for position and orientation (which seems to be preferred over
spline interpolation methods); and d) fitting offsets for position by one of the other
methods and for orientation with Fourier series offsets (partially to allow for
recovery of high frequency jitter, e.g. with Oberst’s (2002) HWBUNDLE lite
program). Reviews of possible methods are given for example by Gruen and
Zhang (2003); Poli et al. (2004), and Toutin (2004).

The orbits are also modeled either as simply a function of Cartesian coordinates,
or for longer arcs or to better represent the orbit parameters uncertainties or to
allow for the use in more complicated orbit solutions, as a function of Keplerian
elements.

Finally, additional parameters are required in order to represent the geometry of
each line of a line scanner camera relative the camera boresight, and therefore in
effect the relative line scanner positions.

For the purpose of implementing a line scanner camera adjustment procedure for
THEMIS IR, we will use second order polynomials to represent camera
(spacecraft) Cartesian coordinates and orientation. Initially, we will assume that
camera calibration information is known (e.g. as already used in ISIS). At a later
date, we could extend our model to allow for the adjustment of the line scanner
position relative to the boresight, as well as adjustment of the absolute start time
of each image or image portion (if an image has missing lines), and other
calibration parameters as necessary. This model could also be extended to
allow for the use of other models of interpolation of position and orientation
between lines, as the need arises for other missions. See Section 6 below for a
discussion of this and other possible future extensions.

For the purpose of software implementation, it has been assumed that the RUPG
randlsq program would be modified. Other options exist, such as rewriting that
program, writing something from scratch, or waiting until the adjustment program
planned for DISR and MER processing is complete – and then modifying it.
However, the randlsq modification option currently appears to be the most
practical and time- and cost-effective, for reasons discussed further in Section 4.

 4

In the rest of this paper, material on the specific new parameters and how
relevant partial derivatives should be computed is presented in Section 2. In
section 3 I provide briefly – more as a review reference then anything else - the
equations for how these observation equations and their partials can be used in a
least squares adjustment in order to recover estimates of improved parameter
values and their variances and covariances. Section 4 considers what specific
changes will be needed to the randlsq software and suggests how these could be
implemented. Section 5 briefly discusses the testing we plan to do, and lists a
few items for planned near-term implementation. Section 6 discusses items that
could be or will be (e.g. handling images from other missions) implemented in the
longer term.

This write-up concludes with a list of references, not all cited here, but including
many regarding the RUPG software, and line scanner camera data handling.
The usefulness of these references is annotated in the list (in brackets).
Appendix I reproduces the first part of Colvin’s (1992) write-up concerning the
theory used in what has become the randlsq program. This is important not only
since it explains to a reasonable extent the implementation/code in randlsq, but
since Section 2 here is based on the same formulation. Appendix II reproduces
a recent e-mail from R. Kirk which describes the HiRISE camera model and
therefore includes examples of the type of camera calibration parameters needed
for a (multi) line-scanner camera system.

For information on ISIS, see Eliason (1997); Gaddis et al. (1997); Torson and
Becker (1997) and http://isis.astrogeology.usgs.gov/.

1.2 Conventions

Vectors and matrices are shown as a single bold variable.

Note that (so far) in the equations presented following, there is no distinction
between image measurements of the same point on different images, or on
different images from different cameras. Bookkeeping of this information will
obviously need to be done (i.e. extended as needed) in the randlsq software.

Also note that in randlsq, x increases with sample values (across the image) and
y increases with line values (along the image), as “sample” and “line” is defined
in the ISIS qmatch software (e-mail from B. Archinal to R. Sucharski of 2003
January 27).

2. Observations Equations and Their Partials

 5

The following discussion is based on that given by Colvin (1992) which is the
basis for the current randlsq program. For reference, Colvin’s discussion is
reproduced below in Appendix I. It is based on the assumption that one starts
with the ground point coordinates, and then the transformation through
successive coordinate systems is derived, back to the camera image plane (x, y)
measurements. Note that this is different from the more common
photogrammetric solution presentation, where the overall transformation – the
collinearity equations – from image to ground coordinates is presented first, and
then the component transformations derived in detail. For an example of this sort
of presentation, see e.g. McGlone (2004). Needed partial derivatives are derived
along the way, with the derivatives of the image plane measurements with
respect to the parameters then computed as needed, e.g. using the chain rule.

So rather then derive everything anew, what is given here is an extension of the
presentation by Colvin. In section 2.1 the additional parameters and model
needed to model a line scanner camera are presented. In section 2.2 the
needed additional partial derivatives are derived. These collectively can then be
used to modify the randlsq program in order to adjust image measures (the basic
observations) of line scanner camera images.

2.1 Line Scanner Camera Specific Modeling

Let’s assume the inertial position of the spacecraft in the body (Mars) centered
system is given by XS, YS, and ZS. The boresight of the camera (for a given line)
is pointed toward the (quasi-inertial) ICRF (i.e. “J2000.0”) right ascension and
declinationα̂ , δ̂ , and the line is rotated from north by the twist angleκ . This is all
at time t.

We will assume that (up to) second order polynomial variations are possible in
the spacecraft position and pointing. This gives us (McGlone, pp. 290-291,
equations 3.138 and 3.139):

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−+−+

−+−+

−+−+

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

)()(

)()(

)()(

2

210

2

210

2

210

RttZttZZ
RttYttYY
RttXttXX

Z
Y
X

R

R

R

s

s

s

 (1)

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−+−+

−+−+

−+−+

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

)()(

)(ˆ)(ˆˆ
)(ˆ)(ˆˆ

ˆ
ˆ

2

210

2

210

2

210

Rtttt
Rtttt
Rtttt

R

R

R

κκκ

δδδ

ααα

κ
δ
α

 (2)

 6

Where X0, Y0, and Z0 is the position of the spacecraft at some reference time tR,
which we will assume here is the time of the central line of a particular image.
Similarly, the camera orientation at that moment is given by the J2000.0 right
ascension and declination 0α̂ , 0̂δ , and twist angle 0κ .

To allow for unknown variations in the spacecraft position and orientation while
the image is being obtained, we will solve for some or all of additional unknowns
X1, Y1, Z1, X2, Y2, Z2, 1α̂ , 1̂δ , 1κ , 2α̂ , 2δ̂ , and 2κ .

Some experimentation will be needed in order to determine what the best
parameter set is. There are several possible cases:

1. Currently, for framing cameras, we solve only for 0α̂ , 0̂δ , and 0κ for each
image. Solutions with only these parameters can/should be done to
provide checks that the algorithm and software are working, and for
comparison with solutions with additional parameters.

2. Solving for the satellite reference position X0, Y0, and Z0 would be the next
step, although when these parameters are solved for it is likely they will
need to be constrained (weighted) at their likely level of accuracy. See
Section 2.2.4 below for additional comments on this.

3. Solving for rates of change in the spacecraft position and (camera)
orientation would likely be next, i.e. for the coefficients X1, Y1, Z1, 1α̂ , 1̂δ ,
and 1κ .

4. For particularly long images (many lines) solving for acceleration of the
spacecraft position and camera orientation may possibly be necessary,
i.e. for the coefficients X2, Y2, Z2, 2α̂ , 2δ̂ , and 2κ .

Ultimately, only testing will show whether this overall polynomial model is
satisfactory. It may be necessary to substitute some other types of models for
equations 1 and 2, e.g. fitting some other types of polynomials, Fourier series
(Oberst, 2002), or perhaps even parameters that correspond to changes in
Keplerian orbit parameters. Such changes may also be necessary for other
spacecraft/camera combinations, e.g. with known “jitter” problems (e.g.
MGS/MOC) or higher resolutions (e.g. MRO/HiRISE).

For multiple line scanner cameras, we need only impose two additional
requirements to our model. First, that the time t of any lines is referenced to a
reference line in one of the line scanner images. Secondly, orientation need only
be solved for for one of the images being collected by the camera, with the
orientation of the other images fixed by a set offset angle (or set of rotations).
(Although it may also be necessary to solve for this angle or angles for calibration
purposes.)

 7

It may also be useful to add parameters for additional camera calibration, e.g. the
focal length f, of the center of the line, a scale factor along the line reflecting any
change in focal length along the line or tilt of the linear array relative to the focal
plane, the offset of the center of the line from the camera boresight, i.e. x0 and y0,
and possibly other camera constants (e.g. for distortion). As an example and for
future use here, this type of parameterization is discussed by R. Kirk for the
HiRISE camera (e-mail to HiGeom group mailing list of 2004 November 22 – see
Appendix II).

2.2 Partials for New Parameters

As mentioned above, the only new parameters being solved for in comparison to
a solution using measurements from a framing camera are (for each image): X0,
Y0, Z0, X1, Y1, Z1, X2, Y2, Z2, 1α̂ , 1̂δ , 1κ , 2α̂ , 2δ̂ , and 2κ .

We therefore need to modify the current randlsq algorithm/program to compute
partial derivatives of the observation equations for these parameters (in addition
to the partials being computed for existing parameters), and to use these partials
to set up the solution for the selected parameters.

2.2.1 Orientation Partials

We already have (from (Colvin, 1992, equation 9 and following) the definition of
the camera orientation matrix C and its partial derivatives with respect to the

three camera angles, i.e. C,
α̂∂
∂C ,

δ̂∂
∂C , and

κ∂
∂C .

Using this as a starting point, we need to compute:

0α̂∂
∂C

,
0δ̂∂

∂C ,
0κ∂

∂C ,
1α̂∂

∂C
,

1̂δ∂
∂C ,

1κ∂
∂C ,

2α̂∂
∂C

,
2δ̂∂

∂C , and
2κ∂

∂C .

We also know (from (2) above) that:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂
∂
∂
∂
∂

1
1
1

ˆ
ˆ
ˆ
ˆ

0

0

0

κ
κ
δ
δ
α
α

 (3)

 8

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂
∂
∂
∂
∂

R

R

R

tt
tt
tt

1

1

1

ˆ
ˆ
ˆ
ˆ

κ
κ
δ
δ
α
α

 (4)

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂
∂
∂
∂
∂

)(

)(

)(

ˆ
ˆ
ˆ
ˆ

2

2

2

2

2

2

Rtt
Rtt
Rtt

κ
κ
δ
δ
α
α

 (5)

So from Colvin (1992) equation 9 we have:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
−−−

=
δδαδα

κδκδακακδακα
κδκδακακδακα

ˆsinˆcosˆsinˆcosˆcos
cosˆcoscosˆsinˆsinsinˆcoscosˆsinˆcossinˆsin
sinˆcossinˆsinˆsincosˆsinsinˆsinˆcoscosˆsin

C

and the partials with respect to each angle:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−+
−−+−

=
∂
∂

0ˆcosˆcosˆcosˆsin
0cosˆsinˆcossinˆsincosˆsinˆsinsinˆcos
0sinˆsinˆcoscosˆsinsinˆsinˆsincosˆcos

ˆ
δαδα

κδακακδακα
κδακακδακα

α
C

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−−
−−−

=
∂
∂

δδαδα
κδκδακδα
κδκδακδα

δ ˆcosˆsinˆsinˆsinˆcos
cosˆsincosˆcosˆsincosˆcosˆcos
sinˆsinsinˆcosˆsinsinˆcosˆcos

ˆ
C

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−+−+
−−−

=
∂
∂

000
sinˆcossinˆsinˆsincosˆcossinˆsinˆcoscosˆsin

cosˆcoscosˆsinˆsinsinˆcoscosˆsinˆcossinˆsin
κδκδακακδακα
κδκδακακδακα

κ
C

As noted earlier, the 0α̂ , 0̂δ , and 0κ parameters actually correspond exactly to

the α̂ , δ̂ , andκ parameters of the framing camera case, and the partials with
respect to them for 0α̂ , 0̂δ , and 0κ are (from equation 3) just 1. So the partials of

 9

C with respect to 0α̂ , 0̂δ , and 0κ are simply the above partials with the angle of
interest substituted:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−+
−−+−

=
∂
∂

0ˆcosˆcosˆcosˆsin
0cosˆsinˆcossinˆsincosˆsinˆsinsinˆcos
0sinˆsinˆcoscosˆsinsinˆsinˆsincosˆcos

ˆ
00

0000

0000

0 δαδα
κδακακδακα
κδακακδακα

α
C (6)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−−
−−−

=
∂
∂

000

000

000

0 ˆcosˆsinˆsinˆsinˆcos
cosˆsincosˆcosˆsincosˆcosˆcos
sinˆsinsinˆcosˆsinsinˆcosˆcos

ˆ
δδαδα

κδκδακδα
κδκδακδα

δ
C (7)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−+−+
−−−

=
∂
∂

000
sinˆcossinˆsinˆsincosˆcossinˆsinˆcoscosˆsin

cosˆcoscosˆsinˆsinsinˆcoscosˆsinˆcossinˆsin

00000

00000

0

κδκδακακδακα
κδκδακακδακα

κ
C

 (8)

The partials of α̂ , δ̂ , and κ with respect to 1α̂ , 1̂δ , and 1κ are (from equation

4) just (t-tR), so the partials of C with respect to 1α̂ , 1̂δ , and 1κ become:

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

−−−+

−−−−+−

=
∂
∂

0)(*)ˆcosˆ(cos)(*)ˆcosˆsin(

0)(*)cosˆsinˆcossinˆ(sin)(*)cosˆsinˆsinsinˆ(cos

0)(*)sinˆsinˆcoscosˆsin()(*)sinˆsinˆsincosˆcos(

ˆ
11

1111

1111

1

RttRtt
RttRtt
RttRtt

δαδα

κδακακδακα

κδακακδακα

α
C

 (9)

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−

−−−−−−

−−−−−−

=
∂
∂

)(*ˆcos)(*)ˆsinˆsin()(*)ˆsinˆcos(

)(*)cosˆsin()(*)cosˆcosˆsin()(*)cosˆcosˆcos(

)(*)sinˆsin()(*)sinˆcosˆsin()(*)sinˆcosˆcos(

ˆ
111

111

111

1

RttRttRtt
RttRttRtt
RttRttRtt

δδαδα

κδκδακδα

κδκδακδα

δ
C

 (10)

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−+−−+

−−−−−−

=
∂
∂

000
)(*sinˆcos)(*)sinˆsinˆsincosˆcos()(*)sinˆsinˆcoscosˆ(sin

)(*cosˆcos)(*)cosˆsinˆsinsinˆcos()(*)cosˆsinˆcossinˆ(sin

11111

11111

1
RttRttRtt
RttRttRtt

κδκδακακδακα

κδκδακακδακα

κ
C

 (11)

 10

The partials of α̂ , δ̂ , and κ with respect to 2α̂ , 2δ̂ , and 2κ are (from equation

4) just (t-tR)2, so the partials of C with respect to 2α̂ , 2δ̂ , and 2κ become:

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

−−−+

−−−−+−

=
∂
∂

0)(*)ˆcosˆ(cos)(*)ˆcosˆsin(

0)(*)cosˆsinˆcossinˆ(sin)(*)cosˆsinˆsinsinˆ(cos

0)(*)sinˆsinˆcoscosˆsin()(*)sinˆsinˆsincosˆcos(

2

2

2

2

2

22

2

22

2

22

2

22

2

RttRtt
RttRtt
RttRtt

δαδα

κδακακδακα

κδακακδακα

α
C

 (12)

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−

−−−−−−

−−−−−−

=
∂
∂

)(*ˆcos)(*)ˆsinˆsin()(*)ˆsinˆcos(

)(*)cosˆsin()(*)cosˆcosˆsin()(*)cosˆcosˆcos(

)(*)sinˆsin()(*)sinˆcosˆsin()(*)sinˆcosˆcos(

ˆ
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

RttRttRtt
RttRttRtt
RttRttRtt

δδαδα

κδκδακδα

κδκδακδα

δ
C

 (13)

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−+−−+

−−−−−−

=
∂
∂

000
)(*sinˆcos)(*)sinˆsinˆsincosˆcos()(*)sinˆsinˆcoscosˆ(sin

)(*cosˆcos)(*)cosˆsinˆsinsinˆcos()(*)cosˆsinˆcossinˆ(sin
2

2

2

22

2

22

2

2

2

22

2

22

2
RttRttRtt
RttRttRtt

κδκδακακδακα

κδκδακακδακα

κ
C

 (14)

2.2.2 Spatial Partials

Next we need to calculate the partials relative to spacecraft position, i.e. relative
to X0, Y0, Z0, X1, Y1, Z1, X2, Y2, Z2.

We have (from equation 1) the following:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂
∂
∂
∂
∂

1
1
1

0

0

0

Z
Z
Y
Y
X
X

s

s

s

 (15)

 11

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂
∂
∂
∂
∂

R

R

R

s

s

s

tt
tt
tt

Z
Z
Y
Y
X
X

1

1

1

 (16)

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂
∂
∂
∂
∂

)(

)(

)(

2

2

2

2

2

2

Rtt
Rtt
Rtt

Z
Z
Y
Y
X
X

s

s

s

 (17)

Colvin (1992, equation 8) defines the spacecraft position vector, with origin at the
body center and in the J2000.0 coordinate system, as s. Therefore,

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

s

S

S

Z
Y
X

s

However, we are now solving for spacecraft position (and velocity and
acceleration) so now must consider the partials of s with respect to the various
parameters, i.e. in Colvin’s terminology

{ }222111000 Z,Y ,X , Z,Y ,X , Z,Y ,X, ∈
∂
∂ P
P
s

So if the range vector (the vector subtended by the spacecraft and a control
point) is given by (Colvin, equation 8)

sssv −= ˆ

then the partials of this with respect to the various parameters is now given by

{ } { }2221110002001
21

 Z,Y ,X , Z,Y ,X , Z,Y ,X,,,,,,,
ˆ

∈∈
∂
∂

−
∂
∂

=
∂
∂ PwRP

PPP

v

&δαλϕsss

2.2.3 Partials of the observations with respect to the parameters

The range vector in camera coordinates is (Colvin’s equation 10)

 12

vCs=γ

and the partials of γ now become

{ }wRP
PP

&,,,,,,
ˆ

001
11

δαλϕγ
∈

∂
∂

=
∂
∂ sC

{ }2221110002
22

 Z,Y ,X , Z,Y ,X , Z,Y ,X, ∈
∂
∂

−=
∂
∂ P

PP
sCγ

{ },,ˆ,ˆ,,ˆ,ˆ,,ˆ,ˆ, 2221110003
33

κδακδακδαγ
∈

∂
∂

=
∂
∂ P

PP
vsC

We can then proceed to use these partials of γ with respect to the parameters in
the observation equations, i.e. for the x and y image measurements (i.e. Colvin’s
equation 11).

However, note that in a line scanner camera, given the convention here that x is
measured along the line (the sample value) and y is measured along the
direction of line collection (the line value), the y camera coordinate will always be
zero because in the formulation here the measures apply only to a given line.
The actual geometry of that line is determined from the time of the line t, which is
derived from the pixel line measurement line , e.g.

lineRR tlinelinett δ)(−+=

where Rt is the time of the reference line Rline and linetδ is the time difference
between adjacent lines. For THEMIS IR images, the linetδ value should be
obtained from the image labels along with the time startt for the starting line. To
keep the second order polynomials that will be fitted to the image’s position and
orientation symmetric along the image, the reference line and time should be
chosen to be that of some line in the middle of the image. Therefore

linestartRR tlinelinet δ)(−=

Rline can be chosen somewhat arbitrarily, e.g. as simply the line closest to the
middle of the image in question.

Note that this offset in line and time must be tracked so that when updated
position and orientation (SPICE) data is output, it is correctly referenced as
necessary to the start time of the image.

2.2.4 Parameter Weighting

 13

As noted in Section 2.1 above, it is likely, if not certain, that some of the newly
added parameters will need to be constrained (or weighted) if used. For
example, it has long been known that for the narrow fields of view commonly
used in planetary imaging systems, the orientation of the camera will be highly
correlated with the camera (spacecraft) position. This is of course the reason
that randlsq does not currently allow one to solve for position.

So in order to solve for both position and orientation (and even further for
velocity, acceleration, and orientation velocity and acceleration) it will be
necessary to weight these parameters. This is done simply by estimating the
accuracy of the a priori values of the parameters (for example, we can start by
assuming the spacecraft position components are known to an accuracy of 100
meters) and adding the inverse of these estimates (e.g. 1/100 m) to the given
parameter’s position on the diagonal of the normal equations, before the
equations are solved. Such weighting is already possible under various
circumstances in randlsq, e.g. using the original weighting scheme from RAND,
where powers of ten weights could be added to specific parameters, and
additions made here, e.g. where MOLA derived ground point positions and radii
could be weighted, and where Clementine camera angles could be weighted.

The main changes that will be required in randlsq will deal with inputting these
weights (as discussed further in section 4 below) and adding them to the normal
equations.

It is also obvious that some experimentation will be required in order to determine
what weights are needed for a given parameterization. It would also be useful to
investigate (e.g. in the case of THEMIS, with those knowledgeable about the
2001 Mars Odyssey mission) how accurate the a priori SPICE information is
likely to be and at least start with weights derived from such information.

3. Adjustment Model

Colvin (1992, pp. 6-7) very briefly discusses the overall adjustment model to be
used. For completeness and reference, included here are further details on the
method of weighted least squares using observations equations. This material
derives from Uotila (1986, pp. 61-65, 95). Also see Mikhail and Ackermann
(1976) or any number of texts on least square solutions for a similar discussion.

The idealized observation equations are:

)(XF aaL =

 14

where aL are the theoretical values of the observations (an n x 1 vector, where n
is the number of observations), which in turn are a function F of the theoretical
parameter values X a (a u x 1 vector, where u is the number of unknowns).

This can also be expressed as:

)(ˆˆ XF
aaL =

where now aL̂ are the estimated values of the observations, which in turn are
the same function F of the estimated parameter values X̂

a
.

aL̂ can also be expressed as the actual value of the observations, bL plus a

difference vector, known as V , the residuals:

Vb +=LL
aˆ

The idealized parameter values X

aˆ , can also be expressed in terms of their

approximate values X0 plus a difference vector X̂ :

XXX
a ˆˆ 0 += (8)

If we take the partials of the function F with respect to the parameter values, we
obtain the partials:

A
X

a =
∂

∂

ˆ
F (9)

where A is an n by u matrix.

We also can also use the approximate parameter values X0 in the function F, in

order to derive initial estimates L0 of the observations:

)(XL 00 F= (10)

 15

The difference between these initial estimates of the observations L0 and the

observations themselves Lb is:

LLL 0 b−= (11)

(As an aside, the negative of the above values are often called the “O-C’s”, i.e.
the observed minus the computed values.)

We also can estimate in various ways a weight matrix for the observations, i.e.:

∑−
=

1

Lb
P 2

oσ (12)

where P is an n by n weight matrix, 2

oσ is the a priori variance of unit weight

(usually set to 1), and ∑−1

Lb
is an n by n estimated weight matrix for the

observations. This is usually a diagonal matrix, with the diagonal elements only
expressing the estimated relative accuracy of the observations. As we will see in
our case the observations are all image measurements, so they may indeed all
have the same relative accuracy, meaning ∑−1

Lb
could be an identity matrix.

The normal (u by u) matrix then becomes:

PAAN T= (13)

It can then be shown (using the method of minimizing the sum of the squares of

the residualsV) that the correct solution for the parameters' differences X̂ is
given by the following normal equations:

PLA(N)X T1−−=ˆ (14)

The residuals then are:

PLQ)PLAAN(PLAXV v
T11 =−== −−+ (15)

The (scalar) sum of the square of the residuals is:

PLAXPLLPVV TTTT ˆ+= (16)

The (scalar) a posteriori variance of unit weight is:

 16

uno −
=

PVVT
2σ̂ (17)

where as before, n is the number of observations and u is the number of
unknown parameters. “n-u” is also known as the degrees of freedom of the
solution.

It can also be shown that the estimated variance-covariance matrix (of size u by
u) for the parameters, assuming normally distributed errors in the measurements,
is:

12
ˆ)(−=∑ NaX oσ (18)

The estimated variance-covariance matrix for the idealized observations (of size
n by n) then is:

T
o AA(N)aL

12 −=∑ σ (19)

This can be compared to ∑ bL

 in order to make sure the initial estimate of
weights for the observations is reasonable.

The estimated variance-covariance matrix (of size n by n) for the residuals is
sometimes desired, and it is:

))((112 T
o ANAP

V
−− −=∑ σ (20)

4. Implementation

Initially it was not clear whether the adjustment of line scanner camera images
should be implemented as changes in the RUPG software (i.e. randlsq), in a
totally new program, or in software that is to be developed for DISR and MER
image processing (Archinal, 2004a).

However, at this point in time, it appears that the first option should be followed.
This appears to be the fastest way to reach an implementation which we can
start to use for testing purposes. It will rely on already well tested and working
algorithms and I/O procedures. It will also facilitate the combined adjustment of
image measurements from framing cameras and line scanner cameras – which
we need to do as part of this project (e.g. using the THEMIS IR line scanner
camera images along with framing camera images, such as from Viking or
THEMIS VIS).

 17

There would seem to be little to no advantage in writing a totally new program
given that it seems the algorithm listed above will require some fairly
straightforward (but admittedly extensive) changes to the randlsq program. We
have also not progressed far enough along with a planned adjustment program
for DISR and MER and cannot wait (the likely few more months at least) for such
software to be written and tested, before adding a line scanner camera model
adjustment.

So it appears that we should proceed to modify the current version of randlsq
(currently available as laxmi:/work1/barchina/rupg/src/randlsq-ba-dev/randlsq.F).
This is written in generic Fortran. I personally would prefer Fortran continue to
be used for changes (both in the interest of time and so I can assist with changes
now and in the future if desired(!)), but we should consider whether parts or all of
the code should be rewritten in C (or even C++?), if it would speed up the overall
project or be planned for near-term work (e.g. under the ISIS IM project). Some
existing ISIS routines will likely have to be called, so changes to assist in calling
such (C) routines will be necessary in any case.

Bug fixes and some minor development of the randlsq program will probably
continue even after the modifications described here are started. Once this
major modification of randlsq is complete, all of the changes should be merged
together into one compatible program.

Following are subsections which consider the various types of changes that
would be needed to the randlsq.F (or its converted equivalent) code.

4.1 Input/Output Changes

Some changes will be necessary to read the THEMIS IR specific image
measurements, as well as to read the SPICE data for such images. Some
changes will also be necessary in the “program control” input, and whether those
are simply added to the current input or the input of this information is revamped
is a matter of efficiency open to discussion.

4.1.1 Image Measurements

The image measurements will have been made by ISIS qmatch (or any
equivalent software) and will be in pixel form. These will have to be pre-
converted or read in and converted into mm measurements along each line, and
time measurements along the image. Camera model information will also have
to be used in a pre-processing step or after reading the pixel measurements, e.g.
regarding focal length and image distortions along each line.

So, to be specific, the choice should be made whether to convert the pixel
measurements in a pre-processing program (to an x value in mm and a y value in

 18

time) or to convert them while reading them. If the latter, for line-scanner image
measurements, the current randlsq reading of pixel measurements would be
bypassed, and input code written to read this information and needed information
from the images, and to do conversions as necessary.

In either case, the along line pixel measurements should be converted to mm,
using the appropriate focal length (image scale) information, and camera model
(taking care to use the values for the correct filter if they differ). This information
would have to hard coded, or more preferably read from either the images or the
ISIS THEMIS parameters file ($ISISM01DATA/THM_parameters.def.7). The
along track pixel measurements should be converted to time, using the start time
of the image (reference time), and the line time interval of the image (keyword
“IRLINERATE”), as read from the labels of the images or the just mentioned
parameter file. During the solution itself, these times can then be converted to
time differences from the middle of the image, as indicated in Section 2.2.3
above.

4.1.2 SPICE Data

Currently randlsq reads SPICE data (in a specific ASCII format) for each image,
including the time (Julian date), the camera orientation, and spacecraft position.
For THEMIS IR and future line scanner cameras, this SPICE information is much
more extensive, with the information available (and changing) several times in
the course of the collection of a single image. Rather than try to emulate the
current randlsq program method (e.g. by putting out for each image these e.g. 7
numbers many, many times in ASCII format!), it would seem far more reasonable
to use (e.g. ISIS or NAIF) routines to read the SPICE data directly. Similarly,
once this information is updated via a solution, it should be written out so it will be
available for further ISIS processing.

So if line scanner image data were being read, the reading of the SPICE data
from the current a priori file (sometimes called the pole, points, and position file)
would be bypassed, and the SPICE data read in directly using the appropriate
ISIS or NAIF routines.

Note that the “pole and points” information could be (should be?) still read from
the same file as before, because this same information is needed as with any
framing camera solution.

Also note that care must be taken regarding the definitions of the rotations as
obtained from the SPICE CK kernel, since they may require transformation to
match the rotation angle system used in randlsq.

After a solution is complete, rather than outputting the SPICE data to an updated
version of the a priori (poles, points, and position) file, a separate binary file of
SPICE information should be output using appropriate NAIF/ISIS routines.

 19

4.1.3 Program Control (Parameters) Information

Currently, randlsq reads all program control information from a single control (or
“parameters”) file. Additional information will be needed to direct the randlsq
program actions when handling line scanner camera images. Specifically, the
location of the input and output SPICE files, which additional parameters should
be solved for on additional images, and the weights for those parameters, will all
need to be read in.

As noted above, this could probably be done by simply extending the format of
the current parameters files, particularly in regard to specifying the additional
parameters and their weights to be solved for. The SPICE files names would
have to be read from e.g. new lines in the parameter file, or from direct or
command line entries for the program.

An alternative might be to abandon the current method of reading the parameters
entirely, and instead adopt the read of a PVL file, such as that set up by Ben
Atkins, and used in his runrandlsq.pl script. See his web pages at (e.g. for now)
Magnus:/home/batkin/projects/rupg/`uname -s`/docs/html .

4.2 Computational Changes

These changes are the heart of the whole process of handling line scanner
camera images. The essential changes are described in Section 2 above, by
outlining the additional parameters that we need to solve for for each image, and
the additional partial derivatives that need to be computed to allow for the
computation of these parameters. I am not going to try to describe these
changes in detail (e.g. line by line in the program) but will try to outline them here.

4.2.1 Generation of A priori Information

Since we are solving for additional parameters, we need to also generate a priori
values for those parameters. The additional parameters are the second order
polynomial parameters in position and orientation. The easiest way to do this is
to successively treat the three elements of position and three elements of
orientation, by taking the SPICE information for each of these (SPK and CK
respectively) and fitting second order polynomials to this SPICE data. (The
SPICE could be evaluated at each line or perhaps more efficiently, at the position
of each position (in the line direction) where a measurement exists, and the
polynomials fitted to the resulting values.) This curve fitting should be done in
some standard way, e.g. with some standard routines (e.g. Numerical Recipes)
that I will not try to describe here. These a priori parameter values can then be
used to generate the “computed” values of the “observations” (the mm sample

 20

measurements, and time (line) measurements), as well as the desired partial
derivatives.

CK kernels for 2001 Mars Odyssey exist as *.bc files in the $ISISM01DATA
directory or the NAIF ftp site (e.g. “m01_sc_map9.bc”). These are NAIF “type 3”
CK kernels (Bachman and Elson, 2002a), where pointing and the rate of change
of pointing is given for discreet epochs over given intervals (e.g. when an image
is being collected, or according to the kernel comments, when there is data more
often than every 60 seconds). Note however that kernel comments indicate the
(angular) velocity information has simply been interpolated from the orientation
information, so it does not really provide any additional information. The naiflib
CK kernel access software will linearly interpolate this orientation and orientation
rate information at any times requested. Initially it would probably be simplest to
use the appropriate naiflib routines to provide this information before a
polynomial fit is made to it in randlsq, but eventually it might be worth testing
whether the information should be read for the specific times it is available, and
that information fitted to a polynomial directly.

SPK kernels for 2001 Mars Odyssey exist as *.bsp files in the $ISISM01DATA
directory of the NAIF ftp site (e.g. “m01_map9.bsp”). These are NAIF “type 1”
PCK kernels (Bachman and Elson, 2002b), i.e. with “modified difference arrays”
(MDAs). This information appears to provide spacecraft position and velocity at
discrete intervals. Again, it would probably be simplest to use appropriate naiflib
routines to collect this information and generate a priori polynomial coefficients,
but it might be useful to test at some point whether using the MDAs directly
would provide an increase in accuracy.

4.2.2 Partial derivatives

Partial derivatives will need to be computed as described in Section 2 above.
Note here (and for the a priori computation) that for some images the use of all
the possible new parameters will be optional. In other words, even if we do so
for test purposes, not all parameters will be solved for every image, so additional
bookkeeping to keep track of the parameters to be solved for for each image will
have to be added.

The basic idea is that the randlsq software already solves for partials for most of
the parameters of interest. Also these partials are often solved for by the chain
rule, so we need only solve for the very specific partials (listed in Section 2) for
the new parameters, and then continue to compute the final partials (of the
observations with respect to the parameters) by continuing to apply the chain
rule, using some partials that are already available. (I know, I know, this may not
be entirely clear, but again, rather than cover this now line by line in randlsq.F,
we can discuss it and work though it and the code if necessary.)

 21

Various changes to handle the “overhead” of additional parameters will also be
needed, e.g. dimensioning the initial arrays large enough, keeping track of which
new parameters are needed for each image, and keeping track of weights (if any)
on the new parameters. Output will also need to be added to show the a priori
and adjusted values of the new parameters for each image.

Additionally, I have found it useful in least squares adjustment programs to keep
track of the list of parameters being solved for in one (character) array. This at
least facilitates debugging and error checking in that values such as solved for
parameters and their corresponding normal equation values can be checked and
output as needed and quickly associated with their real meaning (as opposed to
just their parameter number). This type of tracking was not in the RAND
software originally, as it simply recomputed the position of a parameter in the
normal equations every time it needed it. However, I have partially added this
information in the form of the array “namep”, and this usage could easily be
extended to handle the new parameters (handling not only a name indicating the
type of parameter as is currently done, but also the image or point name that it’s
associated with).

4.2.3 Solution Output

This has mostly been covered above, but after a solution has converged,
additional output related to the line scanner camera data will be needed.

At the least, “printed” output will be needed to show the a priori and solved for
values, and uncertainties, of any new parameters added, e.g. the solved for
polynomial coefficients for each image. The uncertainties are only accessible in
matrix inversion solutions, but with small numbers of images we should be able
to do all the solutions by this method (handling a global mosaic will require the
use of a conjugate gradient solution and/or the use of true block adjustment
solution techniques.) Along these same lines, it will also probably be quite useful
to see the correlations (derived from the covariances, i.e. the off axis elements of
the inverted normal matrix) of the position and orientation parameters for each
image. This would help to verify what types of weights are needed on these
parameters and which parameters are even meaningful to solve for (since we
know the correlation will be high between the position and orientation).

The parameter weights actually used should also be shown with this output, or
perhaps more conveniently to program, when they are set before the start of the
solution (as they are now in a couple of different forms).

We will also need to go back from the solved for polynomial coefficients to the
representation used in the SPICE data. So the reverse procedure of that
described above will now be needed. The second order polynomials will be used
to evaluate the position, velocity, and orientation information, e.g. at each line,
and then this new information could be output using the appropriate naiflib

 22

routines for position and velocity (“type 1” SPK) and orientation (“type 3” CK).
Further rotations (the reverse of any applied during reading) may need to be
applied to the CK information before output, in order to convert from the randlsq
to the CK file rotation system.

This should complete the coverage of the changes needed. The essential output
of the solution will be represented by the updated SPICE kernels, from which
new, geodetically controlled, mosaics can be generated, using normal ISIS
procedures. Updated positions for the control points will also be available as
usual from the randlsq output.

5. Testing and Near Term Work

Tie point measurements on THEMIS IR images are being collected by L. Weller
in the area of the 2 MER landing ellipses. For at least one pair of mostly
overlapping images, a substantial set of such measures is being collected (e.g.
~100? tie points), and for the others reasonable numbers of tie points (e.g. ~10
per image pair, including measurement against MOLA DIMs).

Initial testing of the software should therefore center on adjusting the geometry of
the pair of overlapping images with a dense set of measures. An initial solution
should be done using the same set of parameters normally used for a framing
camera solution, i.e. solving only for the (3 angle) orientation of one and/or both
of the images. Successive solutions should then be done, increasing the number
of parameters added in each solution (e.g. first adding position, then velocity of
orientation change, then spacecraft velocity, then acceleration of orientation
change, and finally spacecraft acceleration) and adjusting weights on these
parameters if appropriate. A similar series of solutions should also be done,
reducing the number of tie points in each in order to see where the “break even”
point is for tie points per image, for the given parameterization. After each
solution or sets of solutions, an analysis can be done to see if the addition of the
parameters in question significantly improved the solution or not. The residuals
can also be examined to see if there is some motion that is not being adequately
compensated for by the use of the second order polynomial fits.

After this, the solutions should shift to handling the multiple images covering the
MER landing ellipses, redoing some of the same sorts of comparisons indicated
above. In particular, the absolute positions of some number of points located in
the adjustment should be compared with their MOLA DIM measured locations.

A final step in this (CDP funded portion of the) project will be to collect tie point
measurements from THEMIS VIS images, and adjust this data along with the
corresponding THEMIS VIS image measures. Some additional programming will
be needed here in order to preprocess the VIS image measures, e.g. as is done
for the other framing camera cases (e.g. a short preprocessing program like

 23

isschange will be needed to convert pixel measures to idealized mm measures).
But this will assure that VIS and IR image data can be adjusted together, and for
that matter more generally that randlsq could then be used to adjust any framing
camera measures (e.g. including Mariner 9 and Viking) along with THEMIS IR
measures.

If time permits (or in later work), we should also attempt to add as a parameter
an offset to the absolute start time of each image or image portion. The latter
case will address the situation of images were lines are missing and the absolute
time of some set of lines is not known. The former case will address the situation
where the difference between the commanded and actual start time of an image
is not known. This parameter could only be solved for relative to absolute (i.e.
MOLA based) ground control, or if overlapping descending and ascending
images (day and night) were adjusted together.

Another addition that should be added fairly early on is the automatic handling of
images that are “broken”, i.e. have any missing lines. If such an image is
processed (recognized how from the labels?), it should be treated as two
different images, each with its own set of parameters. It may be necessary to
reject (with a suitable error message) the processing of any such partial images
where insufficient measures then exist for the different portions. A further
extension of this would be to add an option to allow the user to manually treat
some images in such a fashion, e.g. when other than automatically available
information indicates the image was “broken”.

6. Future Work

Other, somewhat longer term issues are what additional parameters will need to
be added (if any) for camera calibration, and also what additional types of
constraints on the total transformations are needed.

At some point in the future, it might be useful to add additional capabilities for the
THEMIS IR line scanner camera system, e.g. for calibration purposes, and in
order to treat the multiple infrared bands collected during each image acquisition
as a multi-line scanner camera system. For calibration, we should at least try to
allow for the adjustment of the line scanner position (in the THEMIS case, as
integrated over the lines used for each filter) relative to the camera boresight.
Substantial information on this is available in the THEMIS frames kernel, e.g.
locally at magnus:/home/jtorson/ik/m01_themis_v31.ti or from the NAIF ftp site.
(Also see the 2001 Mars Odyssey frames kernel, available as
$ISISM01DATA/m01_v26.tf or from the NAIF ftp site.) Tom Duxbury and Anton
Ivanov (both at JPL) have also done some investigations concerning these
parameters and could be consulted for additional information.

 24

It may also be desirable to add additional constraints or to even change the set of
“additional parameters” described here in order to better solve for the line
scanner camera geometry. Only by testing using the procedures here will we
likely see whether such improvements would be worthwhile.

It would also be useful to add an option to not only break images into pieces and
treat them separately (as discussed in the previous section) but to optionally
make sure such images are treated in a piecewise continuous fashion if there in
fact are no missing lines between the pieces. Here constraints should be placed
on the position, velocity, orientation, and orientation velocity so that the last line
of one image will be handled in a consistent way with the next line – the first line
of the next image.

As noted already, eventually we plan to add capabilities to process data from the
other planetary line scanner camera systems (MOC, HRSC, and HiRISE).
Additional parameterization may also be needed for camera calibration of these
instruments as well. See for example R. Kirk’s summary of a camera (sensor)
model for HiRISE (Appendix II below), where various camera calibration
constants are described.

Acknowledgements

This work has relied on funding from the NASA Critical Data Products initiative.
Thanks to Jim Torson for information on parameters relevant to the THEMIS
camera (personal communication of 2004 December 3) and to Randy Kirk for the
information on HiRISE camera modeling.

References

The availability of a reference is often indicated following the reference.
Comments on the material covered are in the set of brackets. Not all of these
references are currently cited above.

Archinal, B. A., et al. (2000), A New RAND-USGS Control Network and Size
Determination for Io, Eos Trans. AGU (suppl.), 81, p. F317. [Io control. RUPG
software.]

Archinal, B. A., et al. (2001), An Improved RAND-USGS Control Network and
Size Determination for Io, Lunar Planet. Sci., XXXII, Abstract 1746, Lunar and
Planetary Institute, Houston (CD-ROM). [Io control. RUPG software.]

Archinal, B. A., et al. (2002), A MOLA-Controlled RAND-USGS Control Network
for Mars, Lunar Planet. Sci., XIII, Abstract no. 1632, Lunar and Planetary
Institute, Houston (CD-ROM). [MDIM 2.1. RUPG software.]

 25

Archinal, B. A., et al. (2003a), Mars Digital Image Model 2.1 Control Network,
Lunar Planet. Sci., XIVI, Abstract no. 1485, Lunar and Planetary Institute,
Houston (CD-ROM). [MDIM 2.1. RUPG software.]

Archinal, B. A., et al. (2003b), Mars Digital Image Model (MDIM) 2.1 Control Network,
in ISPRS WG IV/9: Extraterrestrial Mapping Workshop Advances in Planetary
Mapping 2003, Houston, TX. Available at
http://astrogeology.usgs.gov/Projects/ISPRS/MEETINGS/Houston2003/final.html.
[MDIM 2.1. RUPG software.]

Archinal, B. (2004a), Modeling and Adjustment of Mars Exploration Rover
Camera and Coordinate Systems Geometry, April 10, unpublished. [Partial basis
for this document. Describes planned adjustment for DISR, MER, and perhaps
eventually all planetary images.]

Archinal, B. A. (2004b), Documentation for RAND-USGS Planetary Geodesy
Software. April 14, unpublished. [RUPG (or alternately, RUPICON) software.]

Archinal, B. A., Lee, E. M., Kirk, R. L., Duxbury, T. C., Sucharski, R. M., Cook, D.
A., and Barrett, J. M. (2004c), A New Mars Digital Image Model (MDIM 2.1)
Control Network, Commission IV, WG IV/9, XXth ISPRS Congress, 12-23 July,
Istanbul, Turkey. Available at
http://www.isprs.org/istanbul2004/comm4/papers/464.pdf. [MDIM 2.1, Mars
control.]

Bachman, N. J., and L. S. Elson (2002a), CK Required Reading, (Navigation
Ancillary Information Facility, Jet Propulsion Laboratory, Pasadena, CA).
September 5. NAIF Document 174.08. Available from the NAIF ftp site.
[Description of NAIF CK kernels.]

Bachman, N. J., and L. S. Elson (2002b), SPK Required Reading, (Navigation
Ancillary Information Facility, Jet Propulsion Laboratory, Pasadena, CA).
September 5. NAIF Document 168.10. Available from the NAIF ftp site.
[Description of NAIF SPK kernels.]

Christensen, P.R., J.L. Bandfield, J.F. Bell, III, N. Gorelick, V.E. Hamilton, A.
Ivanov, B.M. Jakosky, H.H. Kieffer, M.D. Lane, M.C. Malin, T. McConnochie, A.S.
McEwen, H.Y. McSween, Jr., G.L. Mehall, J.E. Moersch, K.H. Nealson, J.W.
Rice, Jr., M.I. Richardson, S.W. Ruff, M.D. Smith, T.N. Titus, and M.B. Wyatt
(2003), Morphology and composition of the surface of Mars: Mars Odyssey
THEMIS results, Science, 300: 2056–2061. [THEMIS.]

Ebner, Heinrich, Michael Spiegel, Albert Baumgartner, Bernd Giese, Gerhard
Neukum, and the HRSC Co-Investigator Team (2004), Improving the Exterior
Orientation of Mars Express HRSC Imagery, Commission IV, WG IV/9, XXth

 26

ISPRS Congress, 12-23 July, Istanbul, Turkey.
http://www.isprs.org/istanbul2004/comm4/papers/462.pdf. [Adjusts bias to phi
and kappa only, or uses MOLA DEM points for control and also adjusts for single
position and omega offset. Automatic tie point matching. HRSC processing.]

Eliason, E. M. (1997), Production of Digital Image Models Using the ISIS System,
Lunar and Planetary Institute Conference Abstracts, 28th Annual Lunar and
Planetary Science Conference, March 17-21, 1997, Houston, TX, p. 331.
[General reference for ISIS.]

Fritsch, Dieter, and Dirk Stallmann (2002), Rigorous Photogrammetric
Processing of High Resolution Satellite Imagery, IAPRS Vol. XXXIII, Part B1,
Comm. I, pp. 313-321, ISPRS Congress, Amsterdam. 2000. Available at
http://www.ifp.uni-stuttgart.de/publications/2000/Stallmann_1576.pdf. [Highly
derivative of Kratky (1989). Polynomial representation of position and orientation
changes during image acquisition. Use of Gauss-Helmert adjustment model
(observations and conditions). SPOT, IRS-1C, and MOMS-2P/PRIRODA
processing.]

Gaddis, L.; Anderson, J.; Becker, K.; Becker, T.; Cook, D.; Edwards, K.; Eliason,
E.; Hare, T.; Kieffer, H.; Lee, E. M.; Mathews, J.; Soderblom, L.; Sucharski, T.;
Torson, J.; McEwen, A.; Robinson, M. (1997), An Overview of the Integrated
Software for Imaging Spectrometers (ISIS), 28th Annual Lunar and Planetary
Science Conference, March 17-21, 1997, Houston, TX, p. 387. [General
reference for ISIS.]

Gruen, A., and Z. Li (2001), TLS Data Processing Modules, PowerPoint
presentation, 3rd International Image Sensing Seminar on New Development in
Digital Photogrammetry, 24-27 September, Gifu, Japan. Available at
http://www.chikatsu-lab.g.dendai.ac.jp/wgv4/presentation/08_01Li.pdf. [A good
general presentation on line scanner camera systems. Describes basic models
for handling line scanner cameras, i.e. a) Direct georeferencing (DGR); b)
Piecewise polynomial model (RPM); and c) Cubic spline interpolation model
(CSI). TLS System. Image matching. Automatic matching in a multi-line
scanner camera.]

Gruen, A., and Z. Li (2002), Automatic DTM Generation from Three-Line-
Scanner (TLS) Images, GIT Kartdagar Symposium, 17-19 April, Stockholm. .
Available from
http://www.photogrammetry.ethz.ch/research/TLS/pub/automatic_DTM_tls_stock
holm.pdf. [Automatic matching in a multi-line line scanner camera. TLS
System.]

Gruen, A., and Z. Li (2003), Sensor Modeling for Aerial Triangulation with Three-
Line-Scanner (TLS) Imagery, Journal of Photogrammetrie, Fernerkundung,
Geoinformation, 2, pp. 85-98. Available at

 27

http://www.photogrammetry.ethz.ch/general/persons/zhangl_pub/TLS_PFG.pdf.
[Automatic matching in a multi-line scanner camera system. TLS System. This
is a more detailed version of Gruen and Li (2002) above.]

Kratky, V. (1989). Rigorous photogrammetric processing of SPOT images at
CCM Canada, ISPRS Journal of Photogrammetry and Remote Sensing, 44, 53-
71. [Polynomial representation of position and orientation changes during image
acquisition. SPOT processing.]

Malin, M. C., G.E. Danielson, A.P. Ingersoll, H. Masursky, J. Veverka, M.A.
Ravine, and T.A. Soulanille (1992), Mars Observer Camera, J. Geophys. Res.,
97: 7699–7718. [MOC.]

Malin, M.C., and K.S. Edgett (2001), Mars Global Surveyor Mars Orbiter Camera:
Interplanetary cruise through primary mission, J. Geophys. Res., 106(E10):
23,429–23,570. [MOC.]

McEwen, A. S., Delamere, W. A., Eliason, E. M., Grant, J. A., Gulick,, V. C.,
Hansen, C. J., Herkenhoff, K. E., Keszthelyi, L., Kirk, R. L., Mellon, M. T.,
Squyres, S. W., Thomas, N., and Weitz, C. (2002), HiRISE: The High Resolution
Imaging Science Experiment for Mars Reconnaissance Orbiter, Lunar Planet.
Sci., XXXIII, Abstract #1163, Lunar and Planetary Institute, Houston (CD-ROM).
[HiRISE.]

Neukum, G., H. Hoffmann, R. Jaumann, and the HRSC Co-Investigator Team
(2004), The High Resolution Stereo Camera (HRSC) Experiment on the ESA
Mars Express mission. Int. Arch. Photogramm. Remote Sens., XXXV, B, "Geo-
Imagery Bridging Continents", Istanbul, DVD-ROM. [HRSC.]

Mikhail, Edward M., and F. Ackermann [1976]. Observations and Least Squares,
(Harper and Row, Publishers, New York). [Basic reference on least squares
adjustment. Uotila (1986) is more useful, but not generally available.]

McGlone, J., ed. (2004), Manual of Photogrammetry Fifth Edition, American
Society for Photogrammetry and Remote Sensing, Bethesda, Maryland.
Available from the USGS Flagstaff library as 753.5 Am3sm 2004. [Basic
reference on photogrammetry.]

Montenbruck, Oliver, Eberhard Gill, and Timm Ohlhof (1994). A Combined
Approach for Mars-94 Orbit Determination and Photogrammetric Bundle
Adjustment, DLR Forschungsbericht 94-13. [Copy available from Randy Kirk.]
[Assumes fairly rigorous photogrammetric processing of HRSC data, including
use of such data to rigorously improve orbit, and even improve Mars rotation
information. Explanation of this complex model is useful, but it is mostly made
obsolete by the availability of MOLA data. HRSC processing.]

 28

Oberst, J. (2002), Orbit and Pointing Data Adjustment for HRSC on Mars
Express (HWBUNDLE light), PowerPoint presentation, presented at the October
HRSC Team meeting. [Solving for orbit parameters (position and velocity) and
orientation, the latter parameterized via Fourier series so that “jitter” can b
recovered. HRSC processing.]

Oberst, J., T. Roatsch, B. Giese, M. Wahlish, F. Scholten, K. Gwinner, K.-D.
Matz, E. Hauber, R. Jaumann, J. Albertz, S. Gehrke, C. Heipke, R. Schmidt, H.
Ebner, M. Spiegel, S. vanGasselt, G. Neukum, and the HRSC Co-Investigator
Team (2004), The Mapping Performance of the HRSC/SRC in Mars Orbit,
Commission IV, WG IV/9, XXth ISPRS Congress, 12-23 July, Istanbul, Turkey.
Available at http://www.ipi.uni-
hannover.de/html/publikationen/2004/paper/oberst_etal_04_istanbul.pdf. [HRSC
and SRC processing.]

Poli, Daniela (2004), Orientation of Satellite And Airborne Imagery From Multi-
Line Pushbroom Sensors With A Rigorous Sensor Model, Commission I, WG I/5,
XXth ISPRS Congress, 12-23 July, Istanbul, Turkey. Available from
http://www.isprs.org/istanbul2004/comm1/papers/25.pdf. [Good brief reference.
Position and attitude modeled rigorously with second order polynomials.
Alternative of using the rational polynomial coefficients (RPC) also presented.
Automatic tie pointing. SPOT-5/HRS processing.]

Poli, Daniela, Zhang Li, and Armin Gruen (2004), SPOT-5/HRS Stereo Images
Orientation and Automatic DSM Generation, Commission I, XXth ISPRS
Congress, 12-23 July, Istanbul, Turkey. Available at
http://www.isprs.org/istanbul2004/comm1/papers/77.pdf. [Position and attitude
modeled with piecewise second order polynomial functions, with trajectory
divided into segments based on available points. Self calibration parameters.
Also describes tests with rational functions (RPC or rational polynomial
coefficients) model. Automatic tie pointing. SPOT-5/HRS processing.]

Schmidt, R., and R. Brand (2003), Automatic Determination of Tie Points for
HRSC on Mars Express, Proceedings Joint ISPRS/EARSeL Workshop “High
Resolution Mapping from Space 2003, Institut für Photogrammetrie und
GeoInformation, Universität Hannover, 6 p, on CD ROM. Available at
http://www.ipi.uni-hannover.de/html/publikationen/2003/workshop/schmidt.pdf.
[Automatic tie point matching. MOMS-02/D2, MOMS-2P, HRSC-A, and HRSC
processing.]

Slama, Chester C. (ed.) (1980), Manual of Photogrammetry, Fourth Edition,
(American Society of Photogrammetry, Falls Church, VA). [Basic reference on
Photogrammetry. Now mostly superseded by McGlone (2004).]

Torson, J. M.; Becker, K. J. (1997), ISIS - A Software Architecture for
Processing Planetary Images, 28th Annual Lunar and Planetary Science

 29

Conference, March 17-21, 1997, Houston, TX, pp. 1443-1444. [Basic reference
for ISIS.]

Toutin, Thierry (2004), Review Paper: Geometric processing of remote sensing
images: models, algorithms and methods, International Journal of Remote
Sensing, 25(10), pp.1893-1924,
http://www.ccrs.nrcan.gc.ca/ccrs/rd/sci_pub/bibpdf/13288.pdf (accessed 9 May
2004). Preprint available at http://geomatica.unipv.it/autec/Toutin-1.pdf.
[General reference on photogrammetric processing, including use of line scanner
cameras. Section 3 has a good review of methods used so far to process line
scanner images.]

Uotila, Urho A. (1986). Notes on Adjustment Computations Part I, (Department
of Geodetic Science and Surveying, The Ohio State University, Columbus, Ohio).
[Includes good description of least square adjustment models. Not generally
available, but copy available from Archinal.]

Zoej, M. J. Valadan, and S. Sadeghian (2003), Rigorous and Non-Rigorous
Photogrammetric Processing of Ikonos Geo Image, Joint Workshop of ISPRS
Working Groups I/2, I/5, IC WG II/IV, and EARSeL Special Interest Group: 3D
Remote Sensing. Available at http://www.ipi.uni-
hannover.de/html/publikationen/2003/workshop/valadan.pdf. [Lists “rational
functions”, “direct linear transformation” (DLT), “self calibration DLT”, “3D affine
transformation” models. Describes “orbital parameter” model, using Keplerian
parameters, and adjusting 3 orbit orientation angles with polynomial expressions.
Ikonos processing (i.e. where no sensor model is available).]

Useful web sites

ISIS, available at
http://isis.astrogeology.usgs.gov/

Three Line Scanner Project, available at
http://www.photogrammetry.ethz.ch/research/TLS/TLS_Publications.html.

 30

Appendix I

Partial Transcription of Colvin (1992) Documentation

= = = = = = = = = =

[cover]

A RAND NOTE

Photogrammetric Algorithms and Software for Spacecraft Optical Imaging
Systems

Tim R. Colvin

RAND

[inside cover]

The research described in this report was sponsored by the Jet Propulsion
Laboratory under Contract No. 958723.

RAND is a nonprofit institution that seeks to improve public policy through
research and analysis. Publications of RAND do not necessarily reflect the
opinions or policies of the sponsors of RAND research.

Published 1992 by RAND
1700 Main Street, P.O. Box 2138, Santa Monica, CA 90407-2138

[page i]

A RAND NOTE

Photogrammetric Algorithms and Software for Spacecraft Optical Imaging
Systems

Tim R. Colvin

Prepared for the
Jet Propulsion Laboratory

RAND

 31

[page ii is blank]

[page iii]

PREFACE

This Note describes photogrammetric algorithms and software that can be used
with data obtained from spacecraft optical imaging systems. The algorithms and
software allow for control point coordinates, camera orientation angles, the
position of a target body’s north pole, and the target body’s rotation rate.

This work can be used to generate control point networks and ancillary data for
target bodies, which can then be used to mosaic individual photographs into
unified cartographic products. Hence, this work will be useful to many analysts in
the planetary science community.

This Note is intended to be used as a brief reference, rather than an all-
encompassing dissertation on the subject. The intended audience consists of
planetary scientists familiar with the basic data and possessing an intimate
knowledge of FORTRAN.

This work was done as part of the Galileo project for the Jet Propulsion
Laboratory. It has been tested with early data from Galileo, viz., the encounter
with the asteroid Gaspra, and with older Voyager data.

[page iv is blank]

[page v]

SUMMARY

Photographic images taken by a spacecraft, and ancillary data for these images,
are used to solve for control point variables (latitude, longitude, and radius),
camera orientation angles (right ascension, declination, and twist), and target
body pole variables (right ascension and declination of the north pole, and
rotation rate).

This is done by first making pixel measurements on the images and transforming
them to coordinates in the camera focal plane. Then, for the time at which an
image was taken, spacecraft position, camera orientation angles, the position of
the target body’s north pole, the target body’s rotation rate, control point position,
and camera focal length are used to calculate corresponding coordinates in the
camera focal plane. The observed and calculated coordinates are compared in a
least-squares adjustment that solves for the above variables.

 32

The mathematics of the photogrammetric least-squares procedure is described in
detail. It is presented in such a manner that readers desiring to make
modifications are accommodated.

The FORTRAN programs GALGAUSS and GALCGRAD are presented. They
solve the normal equations resulting from the least-squares adjustment in
different ways. One program employs Gaussian elimination, and the other uses
the conjugate gradient method to cleverly solve large systems with minimal
storage.

The appropriate input and output files for the two FORTRAN programs are
discussed and the programs themselves are extensively commented.

[page vi is blank]

[page vii]

CONTENTS

PREFACE iii
SUMMARY v
Section
 1. INTRODUCTION 1
 2. PHOTOGRAMMETRIC ALGORITHMS FOR SPACECRAFT OPTICAL
IMAGING SYSTEMS 2
 3. SOFTWARE DESCRIPTION 8
Appendix
 A. FORTRAN PROGRAM GALGAUSS 21
 B. FORTRAN PROGRAM GALCGRAD 49
REFERENCES 77

[page viii is blank]

[page 1]

1. Introduction

Let’s say I have in front of me a collection of images of some target body, e.g.,
the Moon, taken by a spacecraft with an optical imaging system. And let’s say I
want to deduce some things from these images. Specifically, I would like to
know the latitude, longitude, and radius of certain features on the target body.
These features are called control points. I would also like to know where the
target body’s north pole lies and how fast the body rotates. Finally, I want to

 33

know the precise direction the spacecraft’s camera was pointing when it acquired
an image.

These tasks are accomplished by first making pixel measurements on the
images of the features in which I am interested. Because I know the focal length
of the camera, I can transform these measurements to coordinates in the
camera’s focal plane. These are the observational data. I have obtained them
using just the images and by knowing the focal length.

Remember our objectives from the first paragraph. I solve for these variables by
comparing the observational data, in a least-squares fashion, with a set of
calculated data. The calculated data are derived, in part, from approximations for
the following variables: control point location (latitude, longitude, and radius),
camera orientation angles (right ascension, declination, and twist), and target
body pole variables (right ascension and declination of the north pole, and
rotation rate). Two other quantities are necessary to obtain our set of calculated
data. These are the times at which the images were taken and the positions of
the spacecraft at those times.

The least-squares fit of the calculated data to the observational data yields
improvements to the approximated variables. I can continue to iterate in this
manner until all variables converge. At this juncture I have a set of data that is
self-consistent.

Section 2 presents the mathematics of the photogrammetric least-squares
adjustment. I have attempted to be rigorous as well as general, so that a reader
wishing to make modifications will have an easy time doing so.

Section 3 describes the programs GALGAUSS and GALCGRAD (program
listings are in the appendices) and their inputs and outputs. Sample input and
output files are given to demonstrate the formats of these files.

[page 2]

2. PHOTOGRAMMETRIC ALGORITHMS FOR SPACECRAFT
OPTICAL IMAGING SYSTEMS

We begin with a collection of photographic images. Every image has associated
with it a set of control points. Each control point on an image is coupled with a
pair (x0, y0), measured on the image and transformed to coordinates in the
camera focal plane, and a latitude, longitude, and radius triplet (φ, λ, R).

The coordinates of a control point in a body-fixed frame can be given by

T)sin,sincos,cos(cos ϕλϕλϕRx = (1)

 34

From (1).

TR)cos,sinsin,cossin(ϕλϕλϕ
ϕ

−−=
∂
∂x

TR)0,coscos,sincos(λϕλϕ
λ

−=
∂
∂x

T

R
)sin,sincos,cos(cos ϕλϕλϕ=

∂
∂x

Define the right ascension and declination of the target body’s north pole by

)(0 tααα += (2)
)(0 tδδδ += (3)

where t is the interval between the J2000 epoch and the time the image was
taken, α0 and δ0 are constants, andα and δ are known functions of t.

Define the spin-axis-inertial to Earth-equatorial-inertial transformation matrix as

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−
−−

=
δδ
δαδαα
δαδαα

sincos0
cossinsinsincos
coscossincossin

M (4)

[page 3]

From (2) and (4),

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−

−−
=

∂
∂

000
coscossincossin
cossinsinsincos

0

δαδαα
δαδαα

α
M

From (3) and (4),

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−
−−

=
∂
∂

δδ
δ

cossin0
sinsincossin0
sincoscoscos0

0

δαδα
δαδα

M

Define the prime meridian of the target body by

)(0 twtwww ++= & (5)

 35

where w0 is a constant defining the zero meridian, w& is the target body’s rotation
rate, and w is a known function of t.

From (5).

t
w
w
=

∂
∂
&

Define the body-fixed to spin-axis-inertial transformation matrix by

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

100
0cossin
0sincos

ww
ww

V (6)

From (6),

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−
−−

=
∂
∂

000
0sincos
0cossin

ww
ww

w
V

w
w

ww && ∂
∂

•
∂
∂

=
∂
∂ VV

[page 4]

The coordinates of a control point in the J2000 Earth equatorial inertial system
are given by

MVxs =ˆ (7)

From (1)-(6),

{ }R,,P,
PP

ˆ
λϕ∈

∂
∂

=
∂
∂ xMVs

{ }00 ,P,
PP

ˆ
δα∈

∂
∂

=
∂
∂ VxMs

xVMs
ww && ∂
∂

=
∂
∂ˆ

Define s as the spacecraft position vector in J2000 coordinates. The range
vector, i.e., the vector subtended between the spacecraft and the control point, is
then given by

 36

sssv −= ˆ (8)

Then it is clear that

{ }wR &,,,,,P,
P
ˆ

P 00 δαλϕ∈
∂
∂

=
∂
∂ ssv

Define the camera orientation matrix, which transforms Earth equatorial inertial
coordinates to camera coordinates, by

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
−−−

=
δδαδα

κδκδακακδακα
κδκδακακδακα

ˆsinˆcosˆsinˆcosˆcos
cosˆcoscosˆsinˆsinsinˆcoscosˆsinˆcossinˆsin
sinˆcossinˆsinˆsincosˆsinsinˆsinˆcoscosˆsin

C , (9)

where α̂ and δ̂ define the direction of the optical axis, and κ specifies the picture
rotation angle in the camera focal plane system.

From (9),

[page 5]

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−+
−−+−

=
∂
∂

0ˆcosˆcosˆcosˆsin
0cosˆsinˆcossinˆsincosˆsinˆsinsinˆcos
0sinˆsinˆcoscosˆsinsinˆsinˆsincosˆcos

ˆ
δαδα

κδακακδακα
κδακακδακα

α
C

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−−
−−−

=
∂
∂

δδαδα
κδκδακδα
κδκδακδα

δ ˆcosˆsinˆsinˆsinˆcos
cosˆsincosˆcosˆsincosˆcosˆcos
sinˆsinsinˆcosˆsinsinˆcosˆcos

ˆ
C

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−+−+
−−−

=
∂
∂

000
sinˆcossinˆsinˆsincosˆcossinˆsinˆcoscosˆsin

cosˆcoscosˆsinˆsinsinˆcoscosˆsinˆcossinˆsin
κδκδακακδακα
κδκδακακδακα

κ
C

Define ()Tςηξ ,,=γ as the range vector in camera coordinates,

vCsγ = (10)

 37

By (8) and (10),

{ }wR
v

&,,,,,P,
PP 00 δαλϕγ

∈
∂
∂

=
∂
∂ sC

{ }κδαγ ,ˆ,ˆP,
PP

∈
∂
∂

=
∂
∂ vsC

Define the coordinates of a control point in the camera focal plane by

ς
η

ς
ξ fyfx cc == , (11)

where f is the focal length of the camera. From (11),

{ }κδαδαλϕ
ςηης

ς

ςξξς
ς

,ˆ,ˆ,,,,,,P,

PPP

PPP
00

2

2

wR
fy

fx

c

c

&∈

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−
∂
∂

=
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−
∂
∂

=
∂
∂

[page 6]

Suppose there are a total of n control points, p pictures, m measurements and k
= 3n + 3p + 3 unknowns.

Define by ei the coordinate axis vectors in kℜ , i.e.,

() ()TT 1,0,,0,,0,,0,1 LLL == k1 ee
and define

())()()1()1(,,,, m
c

m
ccc yxyx L=u .

Then the observation equations may be written in the form

fLz = (12)

where

 38

w

R

R

pnpnpn

p
pn

p
pn

p
pn

nnn

n
n

n
n

n
n

&

L

L

∂
∂

=
∂
∂

=
∂
∂

=

∂
∂

=
∂
∂

=
∂
∂

=

∂
∂

=
∂
∂

=
∂
∂

=

∂
∂

=
∂
∂

=
∂
∂

=

∂
∂

=
∂
∂

=
∂
∂

=

++++++

+−+−+

+++

−−

uLeuLeuLe

uLeuLeuLe

uLeuLeuLe

uLeuLeuLe

uLeuLeuLe
111

1

333
0

233
0

133

33133233

1
33

1
23

1
13

31323

32

,,

,ˆ,
ˆ

,ˆ,
ˆ

,,

,,

δα

κδα

κδα

λϕ

λϕ

()wRR pppnnn &LL ∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆= ,,,,ˆ,ˆ,,,ˆ,ˆ,,,,,,, 00111111 δακδακδαλϕλϕz

[page 7]

If one does not wish to solve for some of the variables, then the observation
equations degenerate in an obvious manner. Note also that a special case of the
above equations allows for the solution of a single body-wide radius rather than a
radius at each control point.

The normal equations are formed by multiplying both sides of (12) by LT to get

() fLzLL T=T (13)

Solving (13) gives the desired corrections, viz.,

nj

RRR i
j

i
j

i
j

i
j

i
j

i
j

i
j

i
j

i
j

,,2,1,
)()()1(

)()()1(

)()()1(

L=

⎪
⎪
⎭

⎪⎪
⎬

⎫

∆+=

∆+=

∆+=

+

+

+

γγλ

ϕϕϕ

pj
i
j

i
j

i
j

i
j

i
j

i
j

i
j

i
j

i
j

,,2,1,ˆˆˆ

ˆˆˆ

)()()1(

)()()1(

)()()1(

L=

⎪
⎪
⎭

⎪⎪
⎬

⎫

∆+=

∆+=

∆+=

+

+

+

κκκ

δδδ

ααα

 39

pj

www iii

iii

iii

,,2,1,
)()()1(

)(
0

)(
0

)1(
0

)(
0

)(
0

)1(
0

L

&&&

=
⎪
⎭

⎪
⎬

⎫

∆+=

∆+=

∆+=

+

+

+

δδδ

ααα

Iteration is continued until the variables no longer change.

[page 8]

3. SOFTWARE DESCRIPTION

[…transcription to be continued…]

 40

Appendix II

HiRISE Sensor Model Information

E-mail from R. Kirk to HiGeom group mailing list of 2004 November 22

= = = = = = = = = =

"Randolph L Kirk" <rkirk@usgs.gov>
Sent by: owner-unix@flagmail.wr.usgs.gov
11/22/2004 05:49 PM
Please respond to higeom

 To: HiGeom Group <higeom@flagmail.wr.usgs.gov>
 cc:
 Subject: [higeom] Sensor model formulation for ISIS 3

Jim:
 I apologize... I evidently never wrote anything down about sensor
model approaches after our last meeting on the subject. I'm happy to
make a concrete suggestion how to proceed. What I plan to suggest is
not the only workable approach, but it is one of a couple that are
general enough to make me happy about our prospects of being able to
handle all our sensors in one framework.

I'll start by defining the problem. The overall problem of computing
ground coordinates from image coordinates consists of the following
steps:

1.0) Given sample and line coordinates in an image, determine the
sample and line in the physical detector, taking account of pixel
summation.
1.1) Given the physical detector sample/line coordinates, determine the
XY coordinates of the pixel in the detector plane. These are augmented
with a Z coordinate that is closely related to the focal length, or at
least the distance from the detector plane to the principal point.
1.2) Use a radial distortion polynomial to compute new plane
coordinates X'Y' from XY.
1.3) Normalize the vector X'Y'Z appropriately, to get a unit vector
pointing from the camera to the feature, expressed in the coordinate
system of the camera.
1.4) Rotate this vector into appropriate (body-fixed) coordinates.
1.5) Find the intersection of the line through the spacecraft position
with indicated direction (the unit vector) with the target. This can
be an iterative process if one is using a DTM instead of an ellipse to
describe the target.

The problem of computing image coordinates from ground coordinates
consists of the following steps:

 41

2.1) Take the difference between the feature coordinates (body fixed)
and spacecraft coordinates to get the vector from feature to
spacecraft.
2.2) Normalize this to a unit vector
2.3) Rotate this vector from body-fixed coordinates to camera
coordinates
2.4) De-normalize the unit vector into X'Y'Z where Z is related to the
focal length.
2.5) Apply the optical distortion in the opposite direction to above,
to get XY from X'Y'.
2.6a) For a frame sensor, calculate line and sample from X and Y
2.6b) For a pushbroom sensor, calculate perpendicular distance from XY
to the row of detector pixels. Iterate 2.1-2.6 adjusting the assumed
time of imaging until this distance is zero. Calculate sample from XY
and line from time.

What we are concerned with here are strictly the steps 1.1 and 2.6 (and
we also don't care about the details of how we iterate to adjust the
time in 2.6b, but we do care about calculating the perpendicular
distance).

The vector we are going to compute to start with is the vector from a
detector pixel to the optics principal point and on toward the target.
The detectors are behind the optics in this conventional view, and they
are also upside down. It's equivalent, conventional, and easier to
pretend that the detector plane is rightside up and in front of the
principal point. Then a line from the principal point to the pixel
goes on through it and out into the world to intersect the target. I
can't draw this but can supply a figure. Anyway, if the nominal
optical plane is the XY plane (Z=0) and Z increases away from the
target (out the back of the camera) then the principal point would
normally be located at 0,0,f where f is usually called the focal
length.
(If the camera isn't actually focused at infinity, the distance along
the Z axis won't be the focal length, but we can ignore that
distinction.)
The vector from principal point to pixel is then X,Y,-f.
In the past, we've gotten X and Y by assuming that a particular pixel
(the boresight, at sb, lb) is located at 0,0 and that the axes are
along the rows and columns, so (say) X = delta * (s - sb) and Y = delta
* (lb-l) where delta is the pixel pitch. The sb and lb might be hard
coded for a given instrument; for a scanner we might even assume Y = 0
or Y = constant instead of the second equation. We might have a
detector with different pixel pitches in line and sample but we'd
normally fix the image by resampling instead of dealing with this.
Then we can store f/delta (the "focal length in pixels") in the code
instead of f and ignore delta in the above equations. We'd like to
generalize on a lot of this stuff so we don't have to use a separate
set of assumptions for each detector in the future.

We also get a bunch of new complications when we have cameras with
multiple detectors. We could, perhaps, implement every detector as if
it were a completely separate camera, but if we make a more physical
model with one set of axes and one "focal length" (principal point

 42

coordinate relative to the Z=0 plane) we will have to allow some of the
detectors to be rotated and/or translated relative to that coordinate
system. These rotations/translations are not limited to the XY plane;
the detector could be above/below the plane (making its apparent image
scale different from the others) or it could be tipped, making the
image scale vary across the field of view.

One way to model these effects would be to use a general 3D
transformation between camera coordinates and detector coordinates.
This could be implemented with NAIF Frames but it does not have to be.
We would then have a simple relation like

Xdet = delta * s
Ydet = - delta * L
Zdet = 0

in the detector system, and a rotation/translation between this and the
camera system to get X,Y,Z. Then we would have to form our vector as
X,Y,Z-f instead of just X,Y,Z. I've written L instead of l, but for a
frame camera this would indeed just be the line number. For a scanner,
the true image line l would only appear by determining the time, so L
would either be 0 or we could use it as a bias factor to account for
the effective location of different TDI buffer ranges being in
different places in the coordinate system.

The approach just outlined models the real physics but it has a couple
of drawbacks. We have to make a bunch of NAIF calls, which do a bunch
of matrix and vector operations, every time we want to project a pixel.
Then we have to form Z-f rather than having a fixed z-component to the
vector of interest. This is going to be somewhat slow.

Also, when we go from ground to image for a scanner, we need to
determine the distance from the feature point, projected into the
detector plane, to the detector array. But with the full 3D rotation
the detector array doesn’t lie in the plane. So some cleverness would
be needed to figure out what distance needs to be reported. The answer
is that it's the 2D distance between the point projected into the
detector plane and the detector line projected into the detector plane.

The second approach to describing the detectors and carrying out the
calculations is based on precisely the projection into the nominal
detector plane that we had to do to get the distance anyhow, but it
uses the projected coordinates for everything. The result is a set of
2D matrix/vector operations that will be faster than the 3D operations
in the other approach. The matrix coefficients will not be the
physical transformation coefficients between frames, which might be
seen as a disadvantage, but they can be related to real physical
quantities. Also, we can "own" these quantities ourselves instead of
asking the NAIF frames software to manage them, so this will also give
a speed advantage.

The relation between sample and "line" L (in the sense above, either
the detector line or some kind of mode-related offset) and XY in the

 43

case where the detector does happen to lie right in the nominal plane
is a 2D rotation and translation. It takes the form
X = C10 + C11 * s + C12 * L
Y = C20 + C21 * s + C2 *2 L

with certain restrictions on C11, C12, C21, C22 such that they form a
rotation matrix times a scale factor. Furthermore we know the scale
factor is delta if the detector lies in the plane. The restrictions are
C11*C21+C12*C22=0, C11*C12+C21*C22=0 and C11*C22-C21*C12=delta*delta.
It's actually easier to start from the rotation and make C11 = C22 =
delta*cos(theta) and C12 = -C21 = delta*sin(theta) to build such a
matrix.

The first generalization we can make to this model is to let the scale
be other than delta. This corresponds to letting the detector lie
above or below the nominal detector plane but parallel to it. We can
relate the coefficients to physical quantities by forming the effective
scale C11*C22-C12*C21 and comparing it to the true scale delta. They
will be in the ratio of f to f-Z.

Relaxing the other two constraints lets the scale be different in the
two directions and lets the line and sample directions be not
perpendicular. In both cases, it could be either the physical detector
that has these properties (e.g., nonsquare pixels) or it could be an
effect of projection into the nominal plane.

However, if the detector isn't parallel to the nominal detector plane,
the distance of different pixels above/below the plane will be
different and the effective scale will actually change across the
image. The physical way to model this is to let Z be a linear function
of pixel coordinates and then make the scale proportional to f/(f-Z).
For small departures from the ideal model, i.e., Z << f, we get f/(f-Z)
= 1(1-Z/f) approximately equal to 1+Z/f and the scale will vary
linearly with pixel coordinates. If the scale varies linearly, then
the projected coordinate will vary quadratically.
Thus, the general expression will become

X = C10 + C11 * s + C12 * L + C13 * s^2 + C14 * s * L + C15 * L^2
Y = C20 + C21 * s + C22 * L + C23 * s^2 + C24 * s * L + C25 * L^2

Once again, this would be subject to certain restrictions. The general
form is capable of representing a detector whose rows and columns
actually curve in a parabolic shape, whereas all we want is to have
them project onto the nominal plane with a varying scale. We can get
the necessary constraints with not that much more work than I did in
the case above, but I'm not sure it's worth it.

What I recommend is that we

a) Implement the code in the form just given, with 12 coefficients.
b) Make initial estimates of the values for the coefficients for a
given detector based on our understanding of the idealized geometry of
the camera. This means setting the quadratic coefficients to zero,

 44

calculating C11 = C22 = delta, C12 = -C21 = 0, and figuring out the
nominal offset.
c) Adjust the coefficients to fit the calibration data. This would be
done so as not to introduce the full complexity that is possible.

For example, we would first introduce the rotation theta used above.
Then we might (for a line scanner) introduce a scale difference that
depends only on sample, on the presumption that the variations in L are
small anyway. If we do this in such a way as to keep the projection of
the detector into the nominal plane a straight line, we would have

C13 = eps * C11
C24 = eps * C21
C14=C15=C23=C25=0

where eps is yet another arbitrary constant. We could actually set up
the model with this restriction built into it, i.e.,

X = C10 + C11 * s*(1+eps*s) + C12 * L
Y = C20 + C21 * s*(1+eps*s) + C22 * L

but then we'd probably want to do something different for array
detectors. My opinion is that it's best to set up the quadratic
mapping of detector line and sample to X and Y as given above, and then
use restraint when we go to set up the coefficients for different
cameras. For area detectors we'd presumably always set
C13=C14=C15=C23=C24=C25=0, but maybe we would someday encounter a
camera with multiple area CCDs that aren't co-planar, and we'd be happy
we had the more general format. Or we might encounter a pushbroom
camera whose line array got screwed down a little too hard so it's
actually curved, and we could use the general coefficients to model
this.

The remaining problem is how to solve for the distance from a trial
point projected into the plane to the detector curve when the curve is
no longer a straight line.

In the restricted case I'd plan to start with, the curve IS still a
straight line and we could just define T = s*(1+eps*s) and have a line
in XY parameterized by the variable T and the fixed quantity L. Then
the distance from a point at Xpoint,Ypoint to this line is easy to
compute. I don't have the formula memorized but it's a standard result
of analytic geometry: easy to derive, even easier to look up.

The perpendicular distance from a point to a quadratic curve should be
computable fairly easily but it could be multiple valued in the general
case. I am going to break off now and go home before the roads freeze,
so I'll work on this part of the problem at another time.
 Cheers,
 Randy

__
Dr. Randolph L. Kirk
Astrogeology Team Ph. 928-556-7020

 45

U.S. Geological Survey Fax 928-556-7014
2255 N. Gemini Dr.
Flagstaff, AZ 86001 USA
NOTE new email address: ASTROG::RKIRK and
rkirk@flagmail.wr.usgs.gov are now rkirk@usgs.gov
__

[Minor typographical errors have been corrected in the above.]

